人体内每种细胞的表面都有一层独特的含糖外衣。细胞之间进行相互作用时,比如细菌和病毒感染人体时,必须识别糖代码并进行适当的“分子握手”。如果能够破解细胞“甜言蜜语”中的奥秘,掌握阅读和书写这种细胞语言的技巧,我们将获得一种强有力的干预细胞活动的新方法,从而控制和治疗相关疾病。然而要做到这一点并不容易,作为细胞语言的糖代码非常复杂。
英国科学家在解释糖代码的复杂性时说,试着想象你是一种细菌,正在接近宿主细胞,在其表面上的生物分子“森林”上跳伞。你首先遇到的是由糖构成的“树枝”,它们通过蛋白质“树干”与细胞膜相连。任何想进入宿主细胞的细菌都必须________________。这是一个很高的要求,因为含糖“树枝”的形状太复杂了。糖代码(称为糖组)含有数十种不同的糖,这些糖在被称为聚糖的支链中融合在一起。阅读糖代码不仅仅是逐字解码,而是要认识每种糖的形状并理解它的含义。
在自然界中负责抓取细胞表面糖的是被称为凝集素的蛋白质,其内部空腔与特定的糖紧紧贴合在一起。我们知道凝集素的发现已有100多年的历史,并且最近已经开始进行人工制造。但仅仅对不同的凝集素进行整理分类并没有提高我们对糖代码的理解。而当化学家分离出特定的糖并确定了它们的结构之后,我们才对糖代码有了进一步的了解。由于它们如此的庞大、复杂,最好的方法是利用质谱仪,将它们分解为一系列的小片段,借助算法重建母体分子。到了21世纪初,科学家已经确定了一些装饰某些类型细胞的糖。2002年,英国伦敦帝国理工学院的科学家提出了一种方法,将数百个单糖固定在一个培养皿上,然后用各种凝集素和其他分子对它们进行清洗,看看哪些分子会互相结合。这是理解糖代码的一种自动化方法。不久之后,人们尝试利用这种方法,来探究艾滋病病毒和H1N1流感病毒在感染人体的过程中,与人体细胞表面上的哪些糖类进行了结合。然而,我们对于细胞的糖代码仍然知之甚少。
单纯阅读糖代码相对简单,但是如何书写或重写它们呢?这意味着将单个糖分子拼接成聚糖,这是一项艰苦的工作,包括要引导每种糖以正确的方式进行化学反应等。在人体内,这项工作由各种酶负责。不过,这项工作具有更加重要的意义。研究致病微生物表面的聚糖有助于开发更具针对性的疫苗。这种疫苗可使人体的免疫系统发现这些聚糖并杀死致病微生物。一些针对流感和脑膜炎的疫苗已经含有糖的成分,将来,这种方法可以有效治疗包括疟疾在内的其他疾病。
文中第1段“这一点”,指的是:
掌握细胞的结构与机能
识别细胞表面的糖代码
获取干预细胞活动的方法
控制和治疗相关疾病
以下是略有删节的公文部分内容
强化重点领域集中整治。坚持专项整治与日常监管相结合,以关系生命健康、财产安全和环境保护的商品以及知识产权领域的突出问题为重点,定期组织开展专项整治,严厉打击侵权假冒违法犯罪行为。完善以随机抽查为重点的日常监督检查制度,强化对互联网、农村市场和城乡结合部等侵权假冒高发多发领域和地区的监管,坚持线上线下治理相结合,深挖违法犯罪活动的组织者、策划者、实施者,清理生产源头,铲除销售网络,维护公平竞争的市场秩序。
加强部门间执法协作。执法监管部门、行业主管部门等要充分发挥各自优势,加强打击侵权假冒执法协作,促进执法监管和行业管理等信息共享,在执法检查、检验检测、鉴定认定等方面互相提供支持。执法监管部门发现违法行为涉及其他部门职责的,要及时通报相关部门采取措施,对于重大案件线索,必要时要共同研究案情,开展联合执法。加强对基层综合执法部门的指导,(甲)监管职责,(乙)权力清单,(丙)监管漏洞,确保综合执法机构权威高效、运转协调,提高执法效能。
推进区域间执法协调联动。针对侵权假冒行为_______的特点,加强区域间执法协作,探索建立跨区域联席会议、线索通报、证据移转、案件协查、联合办案以及检验鉴定结果互认等制度,完善线索发现、源头追溯、属地查处机制,推动执法程序和标准统一化,加强交界区域基层执法协作,消除监管空白地带,对侵权假冒商品的生产、流通、销售形成全链条打击。结合实施国家区域发展战略,在京津冀、长江经济带、泛珠三角区域等深入开展打击侵权假冒区域合作,总结经验,适时向全国推广。
健全行政执法与刑事司法衔接机制。建立健全行政执法部门与司法机关信息共享,案情通报、案件移送制度,完善案件移送标准和程序,坚决克服有案不移、有案难移、以罚代刑现象。完善行政执法部门与司法机关间有关案件咨询、督查督办等工作机制,规范行政执法证据的固定和移送,实现行政执法与刑事司法无缝衔接。完善涉嫌犯罪案件移送中有关涉案物品处置制度,探索建立涉案物品保管“公物仓”和有毒有害物品统一销毁处理制度。建成中央、省、市、县四级联网的行政执法与刑事司法衔接信息共享系统,提高衔接工作效率和规范化水平。
依据第1段所提出的要求,相关部门应该:
建立完善生产经营主体诚信档案和“黑名单”制度
依法取缔无证照生产经营的“黑作坊”“黑窝点”
推进供给侧结构性改革和发展“互联网+”
积极运用传统媒体和新兴媒体宣传先进典型
浮船坞是一种修造舰船的大型装备,外观就像是把一个干船坞从岸边“刨”了出来。主结构是一个巨大的凹字形船舱,两侧有水密结构的墙,前后端是可以开合的门,实际上是一种构造特殊的槽形平底船,且船底被设计得尤为坚固,以承受大型船只“躺”在上面时带来的压力。两侧的坞墙和坞底均为箱形结构,沿纵向和横向分隔为若干封闭的舱格,有的舱格为水舱,用来灌水和排水,使船坞沉浮。
一般来说,浮船坞本身是不带动力的,如需在港口、码头间移动,则要借助于拖轮的拖和顶。但在少数场合,也需要浮船坞有一定的航行能力。因为如果在远洋进行抢修舰船、打捞沉船,运送深水船舶通过浅水的航道等,就需要浮船坞航行比较远的距离。此时,如仍然用拖轮拖带船坞,不仅速度较慢,在海况较差时航行危险度也较高,甚至会完全无法拖带航行。___________________________________。
自航式浮船坞与半潜式运输船在技术上有一定的共通之处,区别在于前者是一种工程船舶,后者是运输船舶。与半潜式起重船相比,自航式浮船坞不仅具备打捞功能,还具备在海上紧急抢修的功能,这也是人们对它的军事意义有很多联想的主要原因。
其实,早在2012年,中国就成功建造了第一艘自航式浮船坞。不过,那是一艘6000吨左右的浮船坞,虽具备海上航行能力,但就军事用途而言,只能修理护卫舰和轻护船。目前建成的“华船一号”自航式浮船坞体积更大、举力更大,可以修理2万吨级的民船或是6000吨级的驱逐舰(两者的长度类似)。此外,与此前的浮船坞相比,“华船一号”的适航性和自持力大幅提升,可在6级大风和2米浪高的恶劣环境中完成修理保障任务。无论是作为移动兵工厂还是保障舰艇,它都是海军舰船修理领域的重大革命,是对传统修理模式的极大补充。
在“华船一号”试航的新闻报道中,指挥试航的专家还表示:“战时战舰受损,‘华船一号’可自航浮渡至相应海域,实现战损战舰就地‘就医’。”确实,“华船一号”的浮箱空间、沉深吃水、举力都可满足中国主战舰艇进坞修理需求,航速、续航力和自持力相比国内其他同类舰船均有大幅提升,可满足三级海况下的正常航行。
对于海军而言,大型自航式浮船坞实现了装备维修由岸基定点保障向远海机动保障的延伸。但对于真正的远洋海军,即完全具备远洋部署、远洋作战、远洋保障能力的海军来说,“华船一号”只是迈向目标的一小步,接下来还有很多工作要做。
最适合填入第2段画线部分的句子是:
这就是自航式浮船坞诞生的主因
半潜式运输船就不这样
自航式浮船坞可以替代无动力浮船坞
还有一种半潜式运输船
生物柴油一直被誉为是减少我们对化石燃料依赖的可能的解决办法。目前大部分采用生物柴油的车辆使用的都是经过再加工的食用油,这种生物柴油的原材料非常昂贵,而且也很稀缺,因此很难进行大规模商业生产。如果生物柴油想对现实生活产生不可磨灭的真正影响,它就必须直接来源于植物。斯坦福大学的研究人员表示,生产价格低廉的植物生物柴油的化学过程很快就会变成现实。
最近通过大肠杆菌进行的试验表明,这种细菌可能是把植物成功转变成生物柴油的关键。利用植物切实可行地生产生物柴油是一个非常复杂的过程,迄今为止还没有用植物大规模生产这种燃料的可行方法。大肠杆菌能把植物糖分转变成脂肪酸衍生物,一种与肥皂类似的化学物质,是一种行得通的燃料的好前体。但是科学家还不确定这种细菌是否具有可供大规模生产的足够的化学“能力”。斯坦福大学的研究人员进行了相关研究,他们想看一看大肠杆菌在把糖转变成脂肪酸衍生物方面是否存在理论上的“限制”,例如这种细菌是否有能力将常规植物转变为“燃料”。相关研究报告称,这个问题的答案显然是肯定的。研究人员表示:“好消息是大肠杆菌制造脂肪酸衍生物具有令人难以置信的超强能力,它能以极高的速度把糖转变成燃料。”
但是这一过程受到细菌的严密控制,因此我们需要更好地了解大肠杆菌。科研小组已经开始进行这方面的工作,并在实验室环境下隔离了产生脂肪酸衍生物的分子机制。他们说:“我们想弄明白是什么限制了大肠杆菌处理糖的能力。我们正在询问的这个问题就像是什么限制汽车的速度达到每小时150英里的问题。”
我们发现,大肠杆菌限制脂肪酸衍生物产生的目的,显然是为了阻止这种物质对它造成伤害。它采取的“防御措施”非常有效,但是研究人员已经开始研究如何能让这种细菌产生更多脂肪酸衍生物。如果研究取得成功,生物柴油将会突然从一个传奇转变成切实可行的商用燃料。
本文第2段中划线部分“这个问题”指的是:
大肠杆菌是否具有制造脂肪酸衍生物的超强能力
大肠杆菌能否以极高的速度把糖转变成燃料
大肠杆菌能否将常规植物转变成燃料
大肠杆菌把糖转变成脂肪酸衍生物在理论上是否可行
下列针对以上公文的标题提出的修改意见,正确的是( )。
“关于”前要添加发文机关全称或规范化简称
“关于”后面添加“开展”二字
“通知”应改成“通告”
事由中“全国”二字删去
城市是纯粹的人为产物,大部分由混凝土组成,环境干燥,人来人往,污染严重。很难想象,在这种环境下还有物种能平静地生长。
不过,近年来科学家观察到,一些物种具有惊人的能力,逐渐适应了这种新的生活空间——尤其是那些具有活力、能迅速定居的机会主义物种。
以乌鸦为例:直到1990年代初,城市里还没有乌鸦。
但现在它们已经大举进攻,甚至成为城市公害:巴黎的乌鸦毁坏垃圾箱,欺侮行人。其他鸟类也被易得的食物所吸引,适应了城市生活,比如:麻雀、椋鸟、喜鹊、田鸫、鸽子。哺乳动物也不例外:从獾到麝鼠、松鼠,甚至还包括赤狐。
法国国家农业研究院的劳拉•福特尔(Laura Fortel)在2014年夏天指出,里昂市区和市郊的蜜蜂种类已接近全法蜜蜂多样性的三分之一。
植物方面,状况同样惊人。城市生态学家已在巴黎发现一千多种野生植物(聚合草、芝麻菜、兰花、蒲公英、荨麻……)。
随着时间流逝,混凝土周围必然生成了一种新生活。
鸟类学家贝尔纳•卡迪乌(Bernard Cadiou)发现,几十年间形成了一类独特的城市海鸥:“1990年起,自然界的海鸥数量每十年减少一半,城市里的海鸥却仍在增加,并且离海岸越来越远。在巴黎,它们生活在城市群岛中,每片房屋就是一个小岛。城里的一切条件都更加优越:垃圾箱、家庭废品,有时在中心广场或公园里还能找到蚯蚓……人类已为它们造好了避风港。”
动植物群落就这样在城市里安居下来。更妙的是,它们还在城市开发了新的组织策略。法国国家自然历史博物馆(MNHN)的保护生物学家罗曼•朱利亚(Romain Julliard)强调:“动物的可塑性使它们能够利用现有资源。”
这种可塑性也使得动植物改变它们的生活方式。例如,不必再筑巢——电梯装置、通风管道或一片屋顶都可为许多动物提供理想的居所。这位学者描述说:“在乡村,绿头鸭通常在地面筑巢,城市里则在高处栖息。”
食物易得,物种多样性较少,这都抑制了种间的敌对行为,也限制了捕食关系。和平化进程的结果是一些种群数量迅速增加、寿命延长:“在城里,乌鸫寿命能比在乡村长两年。”
另一突出现象是:动物开始定居,减少迁徙行为。这是由于城市的微气候比乡村更暖,适于过冬。“城市茧居”同样更加普遍。繁殖季延长,亲缘联系增强:“城市乌鸫的繁殖期比乡村乌鸫早开始一至四周,夏季幼鸟离巢的时间也晚一个月。”
生态学家菲利普•柯莱若确认:“动物随着城市改变。我们甚至在巴黎地铁里见到蟋蟀以烟草和香烟过滤嘴为食!”红隼的捕猎方式也与以往不同,不再捕食鼩鼱和田鼠,而是食用麻雀和大型昆虫。
生态学家娜塔莉•玛冲研究了植物界的情况。 “所有人类活动都对植物种类构成有影响,植物采取针对城市环境的特殊行为。”城市里的雏菊更能耐受踩踏,蒲公英更倾向于在近处散播种子,使之能够享有珍稀的可用土地。
如给本文拟一个标题。下列选项最合适的是:
面对城市化:动植物改变习性
城市:让动植物生活更美好
警惕!动植物入侵城市生态
城市:因动植物而改变
20世纪80年代,加拿大研究人员曾经做过一个很有趣的试验:他们建立了一个工厂,试着用污泥来生产燃料。他们先是通过机械方法去除污泥里的大部分水分和泥沙,然后将干污泥放进高温蒸馏器中,结果发现:蒸馏之后得到的气态组分转化成了燃油,而固态组分转化成了炭。于是,这家工厂开始利用这种方法生产燃料,每吨污泥可以生产2桶燃油和0.5吨烧结炭。从那以后,随着对城市污泥组成的进一步了解,人们渐渐意识到,污泥中富含碳、氮、磷等资源性物质,这些物质让污泥拥有了变废为宝的可能性。如今,世界多国的科学家都在城市污泥的资源化利用方面做出了大量研究成果,开发了许多城市污泥的利用途径。
虽然污泥具有很高的利用价值,但是要想把污泥变成资源,可不是一件容易的事情。污泥的处理处置要一步步来:首先要经过减量化和稳定化处理,也就是减少污泥的质量和体积,并且降解污泥中的易腐有机物质;然后进行无害化处理,使其不会对环境造成二次污染,不会危害人体健康;最后才是资源化处理,也就是回收具有使用价值的物质和资源。每一个过程都有与之相适应的污泥处理处置技术。例如:浓缩、脱水适用于减量化处理,厌氧消化、好氧堆肥、焚烧适用于稳定化处理,厌氧沼气回收、焚烧热能回收、土地有机质利用、建材无机质利用等技术可用于资源化处理,等等。当然,其中有一些技术可以同时满足多个处理目标。
乍一看,污泥的处理处置有这么多技术路线,似乎“条条大路通罗马”,但是综合考虑技术的成熟程度、经济成本、可持续发展的可行性等因素,厌氧消化技术仍然是最值得关注的技术之一。这种技术利用厌氧微生物,将污泥中的大分子有机物分解为甲烷、二氧化碳、水等简单化合物,产生的沼气可以用作绿色燃料。厌氧消化技术在解决了污泥污染问题的同时,还顺便实现了生物质能的回收,可谓一举两得。但是很可惜,这种技术在我国的应用和运行遇到了很多困难,国外厌氧消化技术装备在我国的运行稳定性很低,效率也不尽如人意。
造成这一局面的主要原因是我国污泥泥质特点与国外存在巨大差异。我国污水厂污泥普遍存在微细砂含量高、有机质含量低的特点,而且污泥组成非常复杂,既含有碳、氮、磷等资源性物质,也含有重金属、难降解有机物、微塑料等污染性物质。另外,我国人口密度高,城市污泥的处理量很大。因此,开发适合我国污泥泥质特点的高级厌氧消化技术迫在眉睫。
本文是某篇文章的节选,该文接下来最可能写的是:
微细砂导致厌氧消化技术效率低的发生机制
我国当前污泥处理处置市场发育缓慢的原因
污泥厌氧消化技术“中国方案”的研究成果
借鉴国外经验推动厌氧消化技术应用的案例
AlphaGo(阿尔法围棋程序)总体上由两个神经网络构成,以下把它们简单称为“两个大脑”。这只是一个比喻,在对弈时,这两个大脑是这样协同工作的:第一个大脑的简单模式会判断出在当前局面下有哪些走法值得考虑。第一个大脑的复杂模式通过蒙特卡洛树来展开各种走法,即所谓的“算棋”,以判断每种走法的优劣。在这个计算过程中,第二个大脑会协助第一个大脑通过判断局面来砍掉大量不值得深入考虑的分岔树,从而大大提高计算效率。与此同时,第二个大脑通过下一步棋导致的新局面的优劣也能给出关于下一步棋的建议。最后,两个大脑的建议被平均加权,做出最终的决定。
其实,这两个大脑的工作方式确实和人类很相似,一个__________细部,一个__________全局。但AlphaGo最终结合两者的方式相当简单粗暴:让两者各自评估一下每种可能的优劣,然后取一个平均数,这可绝不是人类的思维方式。
对人类来说,这两种思考问题方式的结合要复杂得多——不仅仅在围棋中是这样。人们并不总是同时对事态做出宏观和微观的判断,而是有时情绪、心理和潜意识的应激反应。这当然是人类不完美之处,但也是人类行为丰富性的源泉。
为什么要让人工智能去下围棋?有很多理由。但在我看来最重要的一个,是能够让我们更深入地理解智能的本质。
神经网络和机器学习在过去十年里跃进式的发展,确实让人工智能做到许多之前只有人脑才能做到的事,但这并不意味着人工智能的思维方式接近了人类。而且吊诡的是,人工智能在计算能力上的巨大进步,反而掩盖了它在学习人类思维方式上的短板。和国际象棋中的深蓝系统相比,AlphaGo已经和人类接近了许多,深蓝仍然依赖于人类外部定义的价值函数,所以本质上只是个高效计算器。但AlphaGo的价值判断是自我习得的,这就有了人的影子,而且AlphaGo的进步依赖于海量的自我对局数目,这当然是它的长处,但也恰好说明它并未真正掌握人类的学习能力。一个人类棋手一生至多下几千局棋,就能掌握AlphaGo在几百万局棋中所训练出的判断力,这足以证明,人类学习过程中还有某种本质是暂时无法用当前的神经网络程序来刻画的。
这当然不是说AlphaGo应该试图去复制一个人类棋手的大脑,但是AlphaGo的意义也不应该仅仅反映在它最终的棋力上。它是如何成长的?它的不同参数设置如何影响它的综合能力?如果有其他水平相当的人工智能和它反复对弈,它能否从对方身上“学到”和自我对弈不同的能力?对这些问题的研究和回答,恐怕比单纯观察它是否有朝一日能够超越人类重要得多。
文章认为“两个大脑”与人类大脑根本的不同在于:
人的大脑会受情绪心理等因素的干扰
人的大脑有时会出现考虑不周的情况
人脑对事物的思考要比电脑复杂得多
人脑对大局或者细部的侧重并不等同
“今天,你节省了多少碳?”有一群“环保达人”,自觉地少开私家车、坚持走楼梯,电脑不用就关机,用清单列出自己一天的碳排放总量,并把“减碳日记”实时挂到网上……这就是眼下正时兴的“低碳生活”。进入2011年,低碳与生活的联系更加紧密。
人们在生活和消费过程中的过量碳排放,是造成全球气候变暖的因素之一,针对这一点,低碳生活要求人们在日常生活中养成节能的好习惯,减少碳排放,建设资源节约型,环境友好型社会,促进人与自然和谐发展,提升生活质量。
作为可持续的绿色生活方式,低碳生活将是协调经济社会发展和环境保护的重要途径。而从长远看,这更是一种着眼于未来的生活理念。低碳生活受到“低碳族”的响应,与其本身所蕴含的环保元素和道德魅力密不可分。
低碳生活是健康绿色的生活习惯,更是时尚的消费观,是全新的生活质量观。“雁过留声,人过不留碳”。低碳生活不是口号而是理念,把握机遇,才能掌握将来发展,选择低碳生活,才能享受美好未来。
根据文章内容,以下不属于低碳生活的行为是:
夏天把办公室空调温度设置为舒适的18℃
在烹饪食物时尽量减少油炸烧烤
上班族尽可能使用公共交通
出差时自带洗漱用品而不使用宾馆一次性用品
太阳将进入与300年前导致封冻的泰晤士河上能够举行“冰冻博览会”的那段时期相同的变冷期,这种可能性大概有20%,太阳活动迅速减少增强了在下一个50年内世界经历“太阳活动极小期”的可能性。据信,太阳活动极小期是17世纪和18世纪欧洲和北美部分地区出现所谓“小冰期”的部分原因。然而,一项研究发现,与人为释放二氧化碳等温室气体导致的气温上升的预期相比,太阳活动周期自然而长期的起伏所导致的全球平均气温下降的预期可谓小巫见大巫。
这段文字主要想传递的信息是:
太阳将进入同于300年前的活动极小期
下一次太阳“变冷”难以遏制全球变暖
太阳自然变冷能够拯救地球于全球变暖
太阳变冷期的地区性影响大于全球影响