中国最早的文学作品《诗经》中就有不少有关乡愁的篇章(如《采薇》),唐诗宋词中表现乡愁主题的更是不在少数。20世纪中国现代早期的作家,如鲁迅、沈从文、废名、萧红等人,都有书写乡村记忆的作品,那里流宕着他们对乡村陷入现代困境的深切关怀。乡愁当然也是世界文学传统中的主题,荷马史诗《奥德赛》中写的就是奥德修斯历经千辛万苦,在海上漂泊10年,最终回到故土伊萨卡与家人团聚。德国浪漫主义文学兴起,怀乡是其重要的主题,并且具有了现代意义。
这段文字意在说明的是:
中外作家通过怀乡或乡愁作品表现他们对乡村困境的深切关怀
中外的作家都把怀乡或乡愁作为漫长传统中的重要主题来看待
怀乡或乡愁是中外作家通过文学作品铭记历史的最好精神慰藉
中外作家通过怀乡或乡愁的作品表现人类最基本、最普遍情感
每年冬天,当向南迁徙的鸟儿飞过英国的大地时,许多爱鸟人都会在庭院里抛种子和燕麦,希望可以帮助鸟群获得足够的能量。但这种做法使10%的黑顶林莺改变了传统的迁徙路线,它们由德国南部和奥地利飞往西南方向的西班牙转而飞向西北方的英国,在那里依赖爱鸟人的供养生存。
这段文字的主旨是:
人的行为会影响动物的习性
爱护野生动物要注意方法
黑顶林莺的天性使得它们改变了迁徙路线
人类可以通过自身的行为帮助鸟类
如今,在城区,“秋白书苑”融入历史文化街区、院落、名人故居纪念馆、大运河,书香与历史文脉、文化名人、古老建筑_______;在乡村,“秋白书苑”与生态保护、农事体验、四季风光_______,市民和游客竞相“打卡”体验;在科技园区,“秋白书苑”植入高科技元素……各具特色的“秋白书苑”,已在常州街巷、乡村_______。
依次填入画横线部分最恰当的一项是:
相映成趣 各有千秋 兴起
相得益彰 浑然天成 深耕
交相辉映 浑然一体 扎根
错落有致 兼容并蓄 开花
红色资源是宝贵的革命历史文化遗产,全国各地都有自己独特的红色资源,这些红色资源具有唯一性和原真性的特点,十分珍贵。人们走进这些红色资源,正是想________地具体了解其独特的革命遗址、纪念物及先辈的革命事迹,在真实体验中感悟当年艰苦卓绝的革命历程和先辈崇高的革命精神。
填入画横线部分最恰当的一项是:
设身处地
近在咫尺
寓教于乐
亲临其境
当下一系列重大纪念活动为革命历史题材剧提供了创作契机,但有些创作者只是迎合活动而草就,使得剧目________,不能成为保留剧目。究其原因,其中最大问题就是选材,选材不当直接会导致剧种与题材的________。我们一定要考虑该题材是否适合做成戏曲,是否适合该剧种。
依次填入画横线部分最恰当的一项是:
鱼目混珠 脱节
稍纵即逝 断档
粗制滥造 偏离
昙花一现 分裂
汽车行业作为制造业中技术含量、智能化程度和产业集中度较高的代表,已经成为了德国“工业4.0”的先导阵地。长期处于2.0工业思维的中国汽车制造业要在全球占有一席之地,进行技术创新与变革和拥有丰富经验的资深人才必不可少,而高薪和福利成为吸引人才的制胜法宝。
由此可以推出:
如果能够吸引到资深人才,中国汽车制造业的改革就能成功
高薪和福利是很多中国职场人士选择职业时的一个重要关注点
德国汽车制造业在世界汽车行业具有举足轻重的地位和影响力
不进行技术变革,中国汽车制造业就不能在全球占有一席之地
《物种起源》提出的进化论思想不仅推翻了达尔文之前两千多年来居于主导地位的上帝创造世界的观点,改变了人们关于自身和世界的_______,成为一种根本性的_______的变革,具有里程碑式的意义,而且达尔文理论犹如宇宙之酸,“它每浸入一种传统的观念后便会留下一种革命观”,在达尔文的进化论诞生一百多年以来,几乎没有一个科学领域没有受到进化思维的_______。
依次填入画横线部分最恰当的一项是:
设想 不可逆转 渗透
假象 无法遏制 影响
想象 势不可挡 影响
假定 难以控制 渗透
公元前3世纪,古希腊数学家欧几里得提出:“三角形内角之和等于180度。”19世纪,德国数学家黎曼提出:“在球面上,三角形内角之和大于180度。”后来,俄国数学家罗巴切夫斯基又提出:“在凹面上,三角形内角之和小于180度。”这一认识过程说明:
真理具有绝对性
真理具有唯一性
真理具有客观性
真理具有相对性
国家主席胡锦涛在出席德国柏林发展中国家领导人集体会晤时发表了重要讲话,指出中国、巴西、南非、墨西哥的人口约占世界总人口的42%,在全球经济和贸易中的地位日益重要。我们有责任携手合作,共同应对经济全球化带来的风险,维护共同利益,为发展中国家的发展创造有利条件,促进全球协调发展,这表明:
发展中国家面临着发展经济的艰巨任务
发展是经济全球化造成的必然结果
我国与有关国家结成联盟,共同应对强权政治和经济风险
必须建立公正合理的国际政治经济新秩序
十八世纪一位德国数学家在写给著名数学家欧拉的一封信中,提出了一个猜想。该猜想可以表述为:(一)任何不小于6的偶数,都是两个奇素数之和;(二)任何不小于9的奇数,都是三个奇素数之和。我国著名数学家陈景润在证明这一猜想中作出了重大贡献,这个猜想是:
莫德尔猜想
哥德巴赫猜想
康威一诺顿猜想
四色猜想