周末,甲、乙、丙、丁在商场偶遇,一阵寒暄过后得知,他们几人在商场要么只看了电影,要么只购了物。
①丁有购物;
②如果甲有购物,那么乙去看了电影;
③如果丁没有购物,那么丙去看了电影;
④甲和乙都有购物。
如果以上陈述只有一项为真,可以推出:( )。
乙有购物,甲看了电影
丙有购物,乙看了电影
丙有购物,丁看了电影
甲和乙都看了电影
某单位准备从甲、乙、丙、丁、戊、已六人中择优录取数名技术人员,录用情况符合如下条件:
(1)丙和丁恰有一人被录取;
(2)甲和乙至少有一人被录取;
(3)甲和丁恰有一人被录取;
(4)录取乙当且仅当录用丙;
(5)甲、戊、己中恰有两人被录用。
根据上述信息,可以推出最终录用的人数为:( )。
2
3
4
5
一个工程的实施有甲、乙、丙和丁四个工程队供选择。已知甲、乙、丙的效率比为5:4:3,如果由丁单独实施,比由甲单独实施用时长4天,比由乙单独实施用时短5天。问四个队共同实施,多少天可以完成(不足1天的部分算1天)?
10
11
12
13
已知一次英语考试甲、乙、丙、丁的成绩如下:
甲、乙的成绩之和等于丁、丙的成绩之和,如果把乙和丁的成绩互换,甲和丁的成绩之和大于乙和丙的成绩之和,乙的成绩比甲、丙的成绩都高。
根据以上所知,下列哪项为真:
甲的成绩最高
乙的成绩最高
丙的成绩最高
丁的成绩最高
甲、乙、丙、丁、戊、己六位运动员的跳高纪录有如下比较:
(1)乙的成绩比丙好,但不如甲;
(2)丁的成绩不如甲和丙;
(3)戊的成绩好于丁和己,但不如甲和丙。
由此,可以确定:
丁的成绩好于己
己的成绩好于丁
戊的成绩好于乙
乙的成绩好于戊
M市年终机关作风评议工作即将开始,6位专家对市政府甲、乙、丙、丁、戊等5个重要部门分别作出如下预测:
(1)如果甲不能得第一,则丙一定会得第三;
(2)如果乙能得第二,则丁一定会得第四;
(3)如果甲得第一或者乙得第二,则丙一定会得第三;
(4)如果甲得第一,则乙得第二;
(5)丙不会得第三,而甲得第一和乙得第二都是有可能的;
(6)丙不会得第三,但戊会得第五。
评议结束后发现,6位专家中只有一位专家的话不符合评议结果。
据此,可以推出:
甲得第一
乙没有得第二
丙得第三
丁没有得第四
甲、乙、丙从长360米的圆形跑道上的不同点同时出发,沿顺时针方向匀速跑步。3分钟后甲追上乙,又过1分30秒后丙也追上乙,又过3分30秒后丙追上甲,又过5分30秒后丙第二次追上乙。问出发时甲在乙身后多少米?
48
84
108
144
扶贫干部某日需要走访村内6个贫困户甲、乙、丙、丁、戊和己。已知甲和乙的走访次序要相邻,丙要在丁之前走访,戊要在丙之前走访,己只能在第一个或最后一个走访。问走访顺序有多少种不同的安排方式?
32
48
16
24
某城市有5个公园。甲、乙、丙、丁、戊,它们由南至北基本在一条直线上,同时:
(1)乙与丁相邻并且在丁的北边
(2)戊和甲相邻
(3)丙在乙的北边
根据以上线索,可以推断五个公园由北至南的顺序可以是:
甲,丙,戊,乙,丁
乙,丁,戊,甲,丙
丙,甲,戊,乙,丁
丙,丁,乙,甲,戊
有一件未留姓名的好人好事在某社区传开,甲乙丙丁四人有如下对话:
甲说:这件事肯定是乙、丙、丁中的一位做的。
乙说:我没有做这件事,好人好事是丙做的。
丙说:此事是甲和乙中的一位做的。
丁说:乙说的是事实。
经调查,证实这四人中有两人说的符合实际。由此推出:
是甲做的好事
是乙做的好事
是丙做的好事
是丁做的好事